• Home
  • Data Feminism

Data Feminism

  • 09/15/2022
  • 3:45 PM - 5:00 PM
  • Virtual

Registration

  • Guest of GBEN

Register

As data are increasingly mobilized in the service of governments and corporations, their unequal conditions of production, asymmetrical methods of application, and unequal effects on both individuals and groups have become increasingly difficult for data scientists––and others who rely on data in their work––to ignore. But it is precisely this power that makes it worth asking: “Data science by whom? Data science for whom? Data science, with whose interests in mind?”

These are some questions that emerge from what D’Ignazio and Klein call data feminism: a way of thinking about data science and its communication that is informed by the past several decades of intersectional feminist activism and critical thought. This talk will draw on insights from their collaboratively crafted book about how challenges to the male/female binary can challenge other hierarchical (and empirically wrong) classification systems; how an understanding of emotion can expand our ideas about effective data visualization; and how the concept of “invisible labor” can expose the significant human efforts required by our automated systems. Together, they show how feminist thinking be operationalized into more ethical and equitable data practices.

Lauren Klein is Winship Distinguished Research Professor and Associate Professor in the departments of English and Quantitative Theory & Methods at Emory University, where she also directs the Digital Humanities Lab. She is the author of An Archive of Taste: Race and Eating in the Early United States (University of Minnesota Press, 2020) and, with Catherine D’Ignazio, Data Feminism (MIT Press, 2020). With Matthew K. Gold, she edits Debates in the Digital Humanities, a hybrid print-digital publication stream that explores debates in the field as they emerge.

Greater Boston Evaluation Network is a 501(c)3 non-profit organization. 

Powered by Wild Apricot Membership Software